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1. INTRODUCTION

The objective of this report is to explain the statistical methodology used to estimate
total turtle take and mortality for the Hawaiian longline fishery. Our target population, the
population about which information is wanted, consists of all trips by the Hawaiian longline
fisheries recorded in their logbooks. Although turtle takes are recorded in the logbooks, this
information is considered unreliable. On the basis of biological opinions issued under the
Endangered Species Act (ESA), an observer program was established in 1994. The observer
program places trained observers on randomly selected trips of the Hawaiian longline fishery.
Because a list of trips does not exist until the end of the year, trips are sampled such that
the sample population, the population from which samples are drawn, coincides with the
target population as closely as possible. During observed trips, the number of turtle takes
by species, the condition of the turtles, other species of concern, and possible explanatory
variables are recorded by the observer for each longline set. A turtle take is defined as
an interaction between a turtle and the fishing vessel or gear, and usually implies that the
turtle became entangled in the line or was caught on a hook. In this report, the observer
and logbook records from 1994 through 1999 were used to estimate total turtle take and
mortality by species by year. Since sampling did not begin until late February 1994, we
extrapolated from our sampled population to predict take for the first couple of months in
1994.
Model-based predictors, instead of sample-based estimators, have been used to estimate

total turtle takes by species since 1996. Whereas sample-based estimators assume sampling
probabilities to raise observed total takes to the fleet level, model-based predictors assume
a statistical model of turtle takes. Sample-based estimators have the advantage of being
basically free of assumptions concerning the structure of the target population and the char-
acteristics being estimated, but they are typically less efficient than model-based predictors.
Because less than 5% of trips are sampled a year, model-based predictors have been used
to estimate total take with the objective of gaining precision while maintaining acceptable
accuracy.
This paper presents the methods used for modeling and prediction and discusses the

results. The next section describes the data structure, and the methodology used for devel-
oping the prediction model is explained in Section 3. Section 4 describes how total takes
and mortalities were estimated and prediction intervals approximated. The final prediction
models and estimated total takes and mortalities are presented in Section 5.

2. Data structure

Data from the observer program are hierarchical, with trip as our independent observa-
tional unit and sets within a trip defined as subunits. Because of this structure, two types
of stochastic dependence among sets from the same trip may exist. (1) Takes from sets
within a trip may be more closely related than takes across trips. (2) Takes from sets close
together in time and space within a trip may be more closely related. If take is modeled
at the trip level, we could assume independent observations, but information is lost in the
explanatory variables. For example, latitude and longitude are recorded for each set and
these would need to be summarized if modeling at the trip level. Hence, modeling at the
set level is preferred, but results can be misleading if the hierarchical structure of the data
is ignored. Therefore, if explanatory variables do not explain the dependence among sets,
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the dependence should be modeled. Trips by the same vessel may also be dependent, but
without sufficient replication of vessels, we lack the information to model this dependence.
The 10 takes of green turtles observed during 1994-99 came from different trips; thus,

there was no evidence within the data that a green turtle take in one set implies a higher
probability of a green turtle take in another set from the same trip. Only four trips had
more than one set where positive leatherback takes were observed, and only three trips had
more than one set where positive olive ridley takes were observed. Out of 279 observed trips,
245 trips had zero leatherback takes and 254 trips had zero olive ridley takes; hence, there
was little information or evidence in the data concerning dependency, if it exists. Instead of
assuming a dependence structure that could not be checked, sets were treated as independent,
but model diagnostics were used extensively to verify results.
For loggerheads turtles, 224 trips had zero observed takes, but out of the 55 trips with

positive takes, 29 had positive takes in more than one set. If this dependence structure
could be successfully modeled parametrically, we would expect a better predictive model,
but further work is needed to determine if there is an ‘appropriate’ model. Therefore,
loggerhead takes were modeled at the set level, but nonparametric resampling was used to
model the dependence structure when estimating uncertainty.
Prediction models for turtle takes were constructed using observer data and corresponding

logbook data. The response variable was the take recorded by the observer at the set level.
This type of data is frequently referred to as count data; i.e., we counted the number of
times an event, turtle take, occurred. Turtle take is a discrete variable, typically 0, 1,
2, or 3, with the event of a take being rare. Figures 1-4 show approximate positions of
observed sets with positive takes represented by red circles. For all four species, the set-
level data contained a very high percentage of zero takes: 99.7% for green turtles, 98.8%
for leatherbacks, 99.1% for olive ridleys, and 96.2% for loggerheads. If the average count
is sufficiently large so that counts, or a transformation of them, are approximately normal,
robust modeling methods based on the normal distribution can be used. These methods
are generally more straightforward theoretically. For average counts significantly below ten,
results can be misleading if normality is assumed. Our average take per set was less than
one and there was a high frequency of zeros; therefore, the distribution of takes should be
treated as discrete.
Furthermore, since the take rate over the levels of our explanatory variables is commonly

less than one, the calculation of degrees of freedom (d.f.) needs to be adjusted to reflect the
effective degrees of freedom (McCullagh and Nelder, 1989) when relying on maximum likeli-
hood asymptotic distributions for model fitting, hypothesis testing, and interval estimation.
Degrees of freedom in this case refers to the parameter in the Student’s t distribution, the
asymptotic distribution of our maximum likelihood estimate. Degrees of freedom is usually
calculated as the number of independent observations n minus the number of parameters
being estimated p, but when an event is rare, this value is misleading and needs to be mod-
ified to improve the correspondence between the distribution of the test statistic and the
asymptotic distribution. Assuming a Poisson distribution with constant mean, the effective
degrees of freedom is given by f = (n − p)/(1 + .5γ̄2), where γ̄2 is the standardized fourth
cumulant. Approximate confidence limits and hypothesis tests for maximum likelihood esti-
mates should be based on the tf distribution not tn−p. To illustrate this concept, the effective
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degrees of freedom for a sample of 1000 independent observations assuming a Poisson dis-
tribution with a constant rate of take is given in Figure 5. Because of the structure of the
data being analyzed, we do not have a good estimate of effective degrees of freedom.

3. Developing models for turtle take

When developing a prediction model, only explanatory variables well represented in log-
books were considered. Table 1 lists the variables that were considered. Basically we want to
use the simplest possible model that will estimate takes accurately and precisely. This means
reaching a balance between including as few regressors as possible, so as to end up with the
simplest working model and to control the variance of the predictions; and including as many
regressors as possible, so as not to miss anything, to gain the best predictive power, and to
avoid bias. Classification trees, generalized additive models (GAM), and generalized linear
models (GLM) were used as exploratory tools in developing the final predictive models.
Many of the explanatory variables considered were related to each other, and if one of

these variables was included in the model, including the other variables was redundant. To
understand the relationships between explanatory variables, they were considered individu-
ally, in groups of related variables, and in subsets that showed possibilities for prediction.
If a group of variables was associated with take, but there was dependency among them,
careful consideration was taken not to be redundant and to select the best predictors. If a
subset of these were not clearly superior but all were comparable, the decision was based
on (1) minimizing measurement error, (2) the distribution of each variable around its mean
since prediction error will increase as we move away from the average predictor values, and
(3) the degree that the range of the logbook variable was covered in the observed sets since
extrapolation is often less reliable than interpolation.
Because the units of measurement of different quantitative variables varied considerably,

all quantitative variables were scaled according to the equation

x′
i =

2xi −max(x)−min(x)

max(x)−min(x)
,

where xi represents the ith observation of variable x and x represents the vector of observed
values for x. This transformation should also improve the fit of the GAMs since the reliability
of the GAM fit is always reduced at the endpoints of the range of the predictor (Hastie and
Tibshirani 1990), and the transformation will bring in the tails of the distribution.

3.1. Classification trees. Classification trees were used to explore variables associated
with take and help determine possible categorical splits for continuous variables and pooling
of categories for categorical variables. For example, for loggerhead takes, the classification
tree suggested transforming the continuous variable sea surface temperature (sst) into a
categorical variable with two categories, sst < 23.77◦C and sst ≥ 23.77◦C. Additionally,
the trees suggested that months, numbered 1-12, be grouped into three categories: (1,2),
(5,6), and (3,4,7-12).
Classification trees split the sample space based on the multinomial distribution. Turtle

takes are not multinomial, but if the response variable is defined as ‘take’ and ‘no take,’
we have a binomial response, a special case of the multinomial distribution. Since the vast
majority of observed takes were 0 or 1, little information was lost in using classification trees
and the ability to detect associations was increased.
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The tree functions in S-PLUS (Statistical Sciences, Inc., 1993) were used to grow and
prune trees, see Venables and Ripley (1999) for details. At each step, the next split of a
tree was chosen to gain the maximal amount of reduction in the deviance, a function of the
conditional likelihood. A tree continued to grow until the number of cases reaching each leaf
was small, ni < 10, or further splits did not reduce the deviance significantly. The full tree
overfitted the data, thus it was necessary to reduce the number of splits so that the tree
described the important features of the data. To prune the tree, cross-validation was used
to suggest the level of pruning. The basic idea of cross-validation was to divide the original
data into ten mutually exclusive subsets. For each subset, a tree was grown using the data
in the remaining subsets and pruned to various sizes. Each tree’s fit was evaluated using the
removed subset. The level of pruning was determined by comparing the average deviances
measured at various tree sizes.
The cross-validation algorithm treated set as the independent unit, not trip. Because

there was little evidence that sets within the same trip were correlated, we would not expect
much of a difference in the results, but as a safety measure, trees were pruned to a range of
sizes near the size suggested by cross-validation. Variables and subsets of variables that the
classification trees suggested were associated with take were recorded and explored further
using generalized additive models.
One of the major benefits of using trees for prediction is that explanatory variables with

missing values can easily be included. If one of the variables with a reasonable number of
missing values in the logbooks had appeared to be superior as a predictor, using trees for
predicting total takes would have been given further consideration. This was not the case.

3.2. Generalized Linear Models. The splits of the continuous variables suggested by the
trees were unsmooth predictors. For example, if one drew the probability of a loggerhead take
for the two categories of sst suggested by the classification tree with sea surface temperature
on the x-axis and the probability on the y-axis, there would be a break in the line at
sst = 23.77◦C. The next step was to investigate smooth forms of predictors using GLMs
and GAMs and compare these to the unsmooth predictors.
A natural distribution to assume for counts of rare events is the Poisson distribution. For

Poisson counts, the generalized linear model known as the log-linear model is applicable.
The log-linear Poisson model assumes that all counts are independent and is formulated by
assuming that the count Yi is a Poisson random variable with mean µi and observed value
yi = µi + εi, where εi is the residual or ‘error’. The mean is modeled as

log(µi) = β0 +

p∑
j=1

βjxij ,

where (xi1, . . . , xip) are the explanatory variables and the βs are (usually) unknown para-
meters to be estimated. The right side of the equation is referred to as the linear predictor.
The function that connects the linear predictor to the mean µ of Y , in this case the log
function, is known as the link function. Typically maximum likelihood estimates (MLE) are
used as parameter estimates and these are derived using iterative weighted least squares or
the Newton-Raphson method.
Unlike the normal distribution that is completely determined by its two parameters, the

mean µ and the variance σ2, the relationship between the mean and the variance for a
Poisson variate is a fixed relationship. Given a Poisson distribution with parameter λ, this
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relationship is µ = σ2 = λ. Hence, determining the mean of the distribution implicitly
determines its variance and there is no flexibility. This is in contrast to regression models
where the response is assumed normally distributed and the variance parameter and mean
can be estimated separately; thus, any constant degree of variability about the mean is
accommodated in the fitted model. For these reasons, a Poisson distribution may seem
suitable for a response, but when we inspect the model, the variance does not appear to equal
the mean as assumed. If the variance is larger, we say that the data exhibit overdispersion;
if it is smaller, we say the data exhibit underdispersion. Overdispersion is the more common
and typically arises as a result of some sort of clustering or clumping process. With animals
counts, we would expect the data to exhibit overdispersion if the animals tended to aggregate
and underdispersion if the animals were territorial and spread very evenly over their range.
Another situation where data will exhibit overdispersion is when subunits within a primary
unit are correlated but primary units are independent. Failure to acknowledge overdispersion
can lead to serious underestimation of standard errors and hence to misleading inferences
about the form of the linear predictor. Because we are modeling at the set level, but our
independent unit is the trip, it is important to consider overdispersion.
Various methods could be adopted for dealing with the problem, but one straightforward

approach is quasi-likelihood estimation. Quasi-likelihood assumes a functional relationship
between the mean and the variance; that is, it assumes that the variance has the form
V ar(Y ) = V (µ) for some chosen function V . One commonly assumed form for Poisson
data is V ar(Y ) = φµ, where φ > 1 represents overdispersion and φ < 1 underdispersion.
Even relatively substantial errors in the assumed functional form of V ar(Y ) generally have
only a small effect on the conclusion (McCullagh and Nelder, 1989). An advantage of quasi-
likelihood estimation is that point estimates do not depend on the value of σ2. Using quasi-
likelihood methods, φ cancels out in our estimating equations, so that regression parameters
remain the same as if φ were equal to 1. The parameter φ is typically called the dispersion
parameter, and an estimate of φ can be used in estimating the standard errors for the β̂s.
However, quasi-likelihood estimators are not maximum likelihood estimators without the
additional assumption that the responses are Poisson distributed. Nevertheless, McCullagh
(1983) showed they have similar properties as MLE. Under quite general conditions, they
are consistent and asymptotically normal. When quasi-likelihood estimators are not MLE,
Cox (1983) and Firth (1987) showed that they still retain relatively high efficiency as long as
the degree of overdispersion is moderate. However, for the estimation of φ, quasi-likelihood
does not behave like a log-likelihood.
For Poisson data, a conventional estimate of φ is

φ̂ =
1

n− p

∑
i

(yi − µi)
2

µi
=

X2

(n− p)
,

where X2 is the generalized Pearson statistic. However, for the turtle data this estimator
was unsatisfactory because of the number of µi very near 0. For example, there have been
no observed loggerhead takes south of 22◦N ; all 1,263 sets observed below this latitude had
zero takes. One could argue that the probability of a positive take was zero, and thus the
number of takes observed in a set was not a Poisson variate but a fixed number, or that the
probability was very small and the sample size was too small to expect a positive observed
take. Because all observations are zero, the data provides us with no measure of variance,
and if these numbers were included when modeling, the estimated dispersion parameter is
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0.666. However, if these values were excluded, the estimated dispersion parameter is 1.015,
and this still may be underestimating the dispersion. Although loggerhead takes provide the
most dramatic example, the point estimates for φ showed similar problems for all species.
Therefore, this estimate was not used for the dispersion parameter.
Also because several µi < 1, the effective degrees of freedom were reduced. Thus, asymp-

totic distributions frequently assumed for MLE could not be automatically assumed. This
affects interval estimation and sequential model fitting procedures when the methodology
depends on the asymptotic distribution of MLE.

3.3. Generalized additive models. GAMs are a flexible extension of GLMs. Whereas
GLMs restrict the parameters relating the regressors to the response to be of linear form,
GAMs allow any shape ranging from a straight line to nonparametric curves of increasing
complexity. Basically GAMs replace the GLM linear predictor, η =

∑p
j=1 βjxj , with a flexible

additive function η =
∑p

j=1 sj(xj , dj), where sj(xj) is an unspecified smooth function of xj

and dj is the degrees of freedom of the smoother. GAMs still assume additivity of the effects
of the xjs on the linear predictor scale, but allow the effect of xj to follow any smooth curve.
Categorical variables are permitted in GAMs and are expressed in the same manner as they
are in GLMs. Similar to GLMs, the model specification is completed by a variance function,
V ar(Y ) = V (µ). An advantage of GAMs is that they can be used to compare nonlinear
smooth, linear smooth, and nonsmooth predictors.
The GAM is fitted by estimating the smoothing functions, the sjs, just as GLM is fitted

by estimating the parameters, the βjs; however, GAM estimates are not maximum likelihood
estimates and have not been shown to have their properties. Before the function s can be
estimated, the required level of smoothing must be specified. The level of smoothing is
determined by the value of the smoothing parameter what is commonly determined by the
degrees of freedom specified for the smoother. The minimal amount of smoothing is just a
straight line s(x) = βx and the maximal is when s(x) fits the data perfectly; the smoother
goes through all points by allowing a separate gradient for each successive pair of points.
At these two extremes, the GAM is equivalent to the GLM since it is possible to specify s
in parametric form. Between these extremes, the function s is usually not specified but is
estimated nonparametrically from the data by means of a scatterplot smoother. The shape of
the function is therefore determined by the data rather than being restricted to a parametric
form. As the degrees of freedom is increased, the function s gains flexibility and becomes
‘rougher,’ displaying more hills and valleys and more complex shapes. As with any model
building, we want the simplest possible model that will achieve our required purpose. In the
context of GAMS, we want the fewest degrees of freedom in the smoothers that will achieve
our modeling objectives.
Several options are available for the scatterplot smoother. Smoothing splines fit the data

using piecewise cubic polynomials. Models are fitted by satisfying a penalized least squares
criterion. Compared to another common smoother, locally weighted regression (loess), the
theoretical and numerical behavior of smoothing splines are cleaner. When modeling tur-
tle take there was little difference between the fits when using the different smoothers so
smoothing splines were used.

3.4. Fitting and selecting the models. All models in this analysis were fitted using the
statistical software S-PLUS (Statistical Sciences, Inc., 1993). For GLMs and GAMs, a log-
link and quasi-likelihood estimation were specified. Within the GAM framework and for each
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continuous explanatory variable, expressing the relationship between take and the variable
as a parametric curve (straight line or a polynomial of degree two) or a nonparametric curve
was compared. If the classification tree suggested transforming the continuous variable into
a categorical variable, this transformation was compared to the smooth curves.
To develop a subset of plausible linear predictors, stepwise selection based on the gener-

alized information criterion was used. The generalized information criterion in this context
is defined as

GIC = D − αpφ̂,

where D is the deviance, p is the number of parameters in the model, and α is either
constant or a function of n. Two of the most commonly used forms of the GIC are Akaike’s
information criterion (AIC) where α = 2 and Bayesian information criterion (BIC) where
α = log(n). S-PLUS stepwise selection within the GAM framework is based on AIC. The
GIC, including AIC, assumes MLE and independent observations and is a function of the
dispersion parameter. However: (1) GAMs are not MLEs, (2) Assuming that sets within
trips are independent is questionable, especially for loggerheads, (3) We do not have a good
estimate of the dispersion parameter, and (4) AIC may not be the optimal form of the GIC
for our data. The GIC with α = 2 (AIC) leads to a ranking of the model in order of the
estimated mean square error of prediction, and under many situations, 2 is the optimum
value for α. But as n increases there will eventually be a point where larger values of α are
optimum (Atkinson 1980). Also, larger values of α are indicated if the prediction problem
is ill conditioned, the matrix XTX nearly singular (Atkinson 1980). Along these same lines,
as µ → 0 there is likely a point where larger values for α are optimum since µ = 0 is not
estimable. When initially fitting the models and using AIC (α = 2) and assuming a Poisson
family (φ = 1), model diagnostics indicated that models were being overfitted. Because
we have a large n, over 3,000, and because a large proportion of these are zero, a larger
value of α is likely required for optimum model selection. Additionally, with such a high
level of collinearity among explanatory variables, XTX can quickly become ill conditioned.
BIC adjusts for the sample size, and for the analyses in this paper, BIC is the GIC with
α = log(3107) ∼= 8. However, even BIC in this circumstance may not be optimum. Atkinson
(1981) suggests that the range α =2 to 6 may provide a set of plausible initial models for
further analysis, but since α = 8 is BIC, we extended this range.
For these four reasons, stepwise selection within S-PLUS was used only as an aid in

determining the final predictive model. Since we do not have a good estimate of φ and a
higher value for α than 2 is likely optimum, the dispersion parameter was specified over a
range of values from 1 to 10. The higher values for the dispersion parameter place a higher
penalty on adding a regressor, so we were adjusting for α as well as overdispersion. When
using stepwise selection, we recorded the final model selected and models with similar GIC
values. Under this framework, stepwise selection provided a useful tool.
For φ = 4 to φ = 10, the variables selected by stepwise selection were similar to those

selected using classification trees and cross-validation. The similarities between the two are
an indication that by adjusting the dispersion parameter within the S-PLUS environment,
GIC can be used as a tool for model selection. Furthermore, model diagnostics indicated
that variables being selected were associated with take. When φ < 4, model diagnostics
indicated that many of the variables selected showed marginal if any association with take.
Variables were introduced into the GAMs in the same manner as with the classifica-

tion trees, first in similar groups and then combined. Also, since selection was dependent
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on the order regressors were introduced, the order was varied. For continuous variables,
smoothers with different degrees of freedom as well as polynomials of order 2 were consid-
ered. Polynomials place parametric constraints on the shape, and because of the problems
with collinearity in using higher order polynomials, only polynomials of order 2 were consid-
ered. Under the GAM environment, polynomials are fitted as if under the GLM framework;
consequently, issues such as residual degrees of freedom, standard-error bands, and tests of
significance are straightforward under a Poisson family. For nonparametric GAMs, we rely
on approximations and heuristics (Chambers and Hastie, 1993).
Once the GAMs or GLMs were fitted, informal verification of the goodness of fit was

obtained through plots of residuals and estimated standard errors. Figure 6 is an example of
a diagnostic plot supplied in S-PLUS and used extensively in this analysis. The solid line on
the figure is the estimated scaled latitude curve s(lat, 4) with 4 d.f. fitted to the loggerhead
take data; only latitudes greater than 22◦N were included in the data. The dashed lines
lie approximately two standard errors away from the central curve on either side and give
a rough indication of the level of variability around the fitted curve. Even under Poisson
assumptions and independence, the calculation of the standard errors in S-PLUS involves
some crude approximations with unknown properties (Chambers and Hastie, 1993); hence,
it is recommended that these bands only be used for diagnostic purposes. Also, these bands
should not be interpreted as confidence bands as there has been no adjustment for bias and
the normality assumption is questionable. In Figure 6, the standard error band displays a
clear curvature that follows the curvature of the fitted curve but flares out near the endpoints
of the latitude range. The fact that we cannot draw a horizontal line across the plot without
going outside the band provides evidence that latitude was associated with take.
The black circles on Figure 6 represent partial deviance residuals; these are simply the fit-

ted term plus the deviance residual (Chambers and Hastie, 1993). The deviance is a function
of the differences in the log-likelihoods and provides a measure of discrepancy between the
fitted model and the saturated model; i.e., between the model and the data. The deviance
residual for observation yi is the square root of its contribution to the overall deviance mul-
tiplied by sign(yi − µ̂i); i.e., it is positive if yi is greater than its fitted value µ̂i and negative
if yi is less than µ̂i. For our data, zeros dominated the responses and µ̂i was consistently
near zero; therefore, responses with 0 takes have negative deviance residuals and responses
of 1 or greater have positive deviance residuals and greater absolute values. A satisfactory
diagnostic plot typically has residuals distributed evenly and randomly above and below the
fitted curve. Again, due to the nature of our data, the curve will be closest to the zero
values, and symmetry is not expected since zero is a lower boundary for counts. A healthy
fit is indicated by the positive residuals following the pattern of the curve; i.e., the distance
between the curve and the positive residuals is not distinctively greater in one section of the
curve than in another.
Parts of the plot where the standard error band is particularly wide suggest that there are

problems with the fit. Poor fits are most likely to be caused by sparse data or by a choice
of degrees of freedom of the smoother that is too low to give an adequate representation of
the relationship. Sparse data can be detected using the rug-plot along the bottom of Figure
6. The rug-plot gives the frequency of the x-values (Chambers and Hastie, 1993); where
the frequency is high the rug-plot is a solid block. In Figure 6, the rug-plot indicates there
were few observations at the higher latitudes; hence, the standard error band there is very
wide. The band widens at the lower range of latitudes because the reliability of a GAM fit is
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always reduced at the endpoints of the range (Hastie and Tibshirani, 1990). If the diagnostic
plot indicates that the data are too sparse for the fit to be satisfactory, an alternative model
formulation based on other regressors might be considered.
For categorical variables an appropriate step function is produced. Figure 7 is the diagnos-

tic plot for leatherback takes fitted to a model with four categories of latitude. The jittering
of residuals at the base of the plot and around the horizontal lines result in solid bars because
there are so many observations of the value zero; the width of the bars is proportional to
the number of observations in the category. In this example, the fit of the second category
is distinct from the others.
Interactions with nonparametric smooth terms are not fully supported in S-PLUS. One can

model an interaction term two dimensionally, s(x2, x2), using the locally weighted regression
smoother, but, as mentioned in Section 3.3, the theoretical and numerical behavior of loess
are less clear. In our case there was no advantage to using GAMs, and once this was
determined, GLMs were used to fit the models. Likely two-way interactions were introduced
into the models and the stepwise procedure based on the GIC criterion was used in the same
manner as for GAMs. None of the interactions tested appeared to be associated with take.

4. Prediction

Once the predictive model was selected, the take for all unobserved sets was predicted by
substituting in the values recorded in the logbook for all regressors in the model and the
expected take was used as the point estimate,

Ŷi = µ̂i = exp(β̂0 + β̂1xi1 + · · ·+ β̂pxip),

where xij was the logbook value for regressor j on set i. The point estimate for total predicted

take Ŷ+ was the sum of predicted takes for unobserved sets added to the sum of takes for
observed sets,

Ŷ+ =

n∑
i=1

Yi +

N−n∑
i=1

Ŷi,

where n was the number of observed sets, and N was the number of longline sets recorded
in the logbooks.

4.1. Approximating prediction intervals. To measure the uncertainty in the point es-
timates, prediction intervals were approximated. These are similar to confidence intervals
but wider. Confidence intervals measure the uncertainty in the parameter estimates and
are used when interval estimates for the mean response βx are required. When model-based
estimators are used to predict a total, we assume that the total is a random variable. Predic-
tion intervals take into account both the inaccuracy of parameter estimates, and the random
fluctuations in the unobserved takes around the mean, µi = βx. For example, if the average
take of turtles per set is estimated as µ̂ = 1. We do not really expect µ̂ to equal the true
average, so we calculate an interval, known as a confidence interval, that is expected to con-
tain the true value of µ. The probability that a confidence interval will enclose µ is called
the confidence coefficient. Now suppose that the true value of µ = 1. We do not expect the
take to equal 1 for every set but expect some takes to equal 0, others 1, and some greater
than 1: this is what is meant by the variation around the mean.



10

To be independent from questionable asymptotic distributions, prediction intervals were
approximated using a bootstrapping algorithm suggested in Davison and Hinkley (1997).
This resampling algorithm produces response variation in addition to variation in parame-
ter estimates. For the green, leatherback, and olive ridley turtles a parametric bootstrap
was used. There was no evidence that the counts were overdispersed or underdispersed for
these species and therefore a Poisson model was assumed. The basic algorithm was as follows.

Algorithm:
For r=1,...,R,

1. created a bootstrap response y∗i at xi by

y∗i = µ̂i + ε∗i
√

µ̂i(i = 1, ..., n),

where ε∗i were generated Poisson variates with mean µ̂i.
2. refitted the model with the y∗i s and computed predicted totals µ̂∗

yr for yr = 1994, · · · , 1999.
3. for each year, calculated the sum of generated observed y∗yr and calculated the statistic

d∗yr =
y∗yr − µ̂∗

yr√
µ̂∗

yr

.

Finally, the R values of d∗yr were ordered to give d∗yr,(1) ≤ · · · ≤ d∗yr,(R). The prediction
limits were calculated as

(µ̂yr + dyr,((R+1)∗.025)
√

µ̂yr, µ̂yr + dyr,((R+1)∗.975)
√

µ̂yr).

For approximating intervals, it is recommended that R ≥ 999; R=999 was used in all boot-
strap approximations reported here.
For loggerheads, the data’s error structure was modeled instead of assuming a Poisson

distribution. The algorithm follows the one given above except for three changes.

1. εi was generated using Pearson residuals,

y − µ√
φV ar(µ)

.

For each trip, the mean of the Pearson residuals was calculated; let εt denote this mean
for trip t. Then, for all sets within a trip, the difference between the mean and the
residual for that set was calculated; let εh denote this difference. Bootstrap samples ε∗i
were generated by drawing a random εt for each trip and adding a random εh for each
set,

ε∗i = ε∗t + ε∗h.

2.
√
µ̂i was replaced with

√
µ̂iφ̂ where φ̂ = 1.015, as discussed in Section 3.2.

3. As suggested by Davison and Hinkley (1997), stratification of residuals was necessary
to create homogenous groups. Through trial and error, only stratification of εt was
found necessary.

One drawback of this algorithm was that y∗ could take on negative and non-integer values.
To fix this, y∗ was rounded to the nearest appropriate value. The appropriateness of this
algorithm was confirmed using the diagnostics suggested in Davison and Hinkley (1997).
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We did not adjust the point estimates for bias, but the effect is implicitly adjusted for
in the bootstrap distribution used above. This algorithm was tried on the data for the
other turtle species, but was obviously performing poorly due to the extent of the zero takes
present. Since there was no evidence of overdispersion, it was felt that the approximated
prediction intervals calculated using the parametric algorithm were more accurate.

4.2. Estimating mortality. Mortality point estimates were calculated as described in
Kleiber (1998). The information used to estimate the probability of a kill given a take
is provided in Table 2. Total kill was estimated by multiplying this probability by the es-
timated number of takes. To calculate prediction intervals, the probability of dying p was
treated as a binomial probability estimated from a sample size equal to the number of turtles
n observed for that species. The bootstrapping algorithms for takes were used for mortality
prediction intervals, but the y∗i s and µ∗

i s were multiplied by p∗i = x∗
i /n, where x∗

i was gener-
ated as a binomial variate with parameters n and p̂i. Due to the lack of information, these
approximated prediction intervals do not take into account uncertainty in the estimates of
the probability that given its condition a turtle will die as a result of the interaction.

4.3. Adjusting for hardshells. Observed takes of unidentified hardshell turtles, only 10
during 1994-1999, were allocated to loggerhead, olive ridley, or green turtle takes in the same
proportion as observed takes of these species. Except for green turtles, the species they were
assigned to was based on what species they were most likely to be. This was determined
using the prediction models for each species. This was easily done by examining the sea
surface temperature for the observation: olive ridley’s takes were higher at warmer temper-
atures, greater than 23.77◦C, and loggerhead takes were higher at cooler temperatures, less
than 24.22◦C. If the sea surface temperature was not a clear indicator, the observed latitude
was used to determine the species since loggerhead takes were higher in the northern lati-
tudes. The two observations where the choice between olive ridley or loggerhead was most
ambiguous were split fractionally between the three species so that the desired proportions
were acquired.

5. Results

Some of the variables considered and found to be associated with take were poorly rep-
resented in the logbooks from 1994 and 1999, and thus were not considered for prediction.
The prediction models used are given in Table 3. The maximal and minimal latitudes and
sea surface temperatures recorded in the observed sets were close to the extremes in the
logbooks, and between these two extremes, the range of values were well represented in the
observed sets. For loggerhead takes only sets with latitudes north of 22◦N were included
when fitting the final model. Observations below this latitude were all observations of zero
take; 24.4◦N was the southernmost location at which a positive take was recorded in the
observered sets. Including observations below 22◦N resulted in an unstable model and nega-
tive bias: the predicted take totals were 480, 390, 415, 350, 358, and 348 for years 1994-1999,
respectively. The decision to truncate the data at 22◦N was based on the stability of the
model and where the fitted curves tended to ‘flatten out’ at µ̂ ≈ 0; with the Poisson model,
µ̂ cannot equal zero.
For the green turtle, none of the possible predictors appeared to have a strong association

with take, but this could be a result of the small sample size in relation to the rarity of
a green turtle take and does not mean that no relationships exist. For the olive ridley,
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loggerhead, and leatherback turtles, sea surface temperature, latitude, and the distance to
the approximate 17◦C and 19◦C isotherms were associated with take, but there was a high
degree of collinearity between these variables. The plots in Figures 8-11 relate take to the
predictor variables. For the olive ridley turtle there was a clear distinction between the
proportion of takes between the two categories of sea surface temperature, but over latitude,
the pattern was less clear. For the loggerhead turtle where both latitude and sea surface
temperature were in the model, there was a clump of positive observations at the higher
latitudes and at these latitudes, the clump was located in the colder temperatures. When
comparing loggerhead take with latitude versus the three classifications for month, there
were fewer observed trips at the higher latitudes in months 5 and 6. Latitude was split into
four categories for the prediction of leatherback take. The categories most southern and most
northern had fewer observations but a higher proportion of positive takes. In the middle
category representing the middle lower latitudes there was a high proportion of the observed
sets but few positive takes. The middle category representing the middle higher latitudes
also had a high proportion of the observed sets, but it clearly had a greater proportion of
positive takes, but not as high as the two end categories.
Plots of annual take and kill for each species are given in Figures 12 to 15. The shape of

each plot represents the shape of the smoothed ‘de-studentized’ bootstrap distribution for
estimated take. The shape is mirrored around a line representing the prediction interval with
the point estimate represented as a square. The shaded red area represents the estimated
proportion of the distribution above the ‘trigger level’ (authorized level of take or kill for
a given year), the proportion is given above each year’s graph. These results are tabulated
in Tables 4 to 7. The probabilities that total take for loggerhead and leatherback turtles
exceeded the authorized incidental take in 1999 are very small. For olive ridley and green
turtles, the probabilities are larger but below 50%. The probabilities that total mortality
exceeded the authorized mortality are very small for the green and loggerhead turtles and
well below 50% for the leatherback turtle. For the olive ridley turtle, the point estimate
is above the trigger level, and the estimated probability is 66%. From 1995 to 1999, the
estimates for kill and take of olive ridley turtles appear rather stable with only the slightest
indication of an upward trend. The increased number of estimated leatherback takes in 1998
and 1999 can be explained numerically by the increased percentage of trips below 14.95◦N
latitude. From 1994 to 1997 there were from 409 to 610 sets in this area, in 1998 there was
2,186 sets, and in 1999 there were 1,758 sets. In almost all cases, point estimates of take
or kill fell clearly within the prediction intervals for earlier and later years; thus, there is no
evidence of a trend.

6. Discussion

The point estimates of olive ridley mortality for 1995-1999 were above the authorized take
level for this species stipulated in the current Biological Opinion. Out of 32 observed olive
ridley takes, 6 have been reported as dead with 3 of them in 1998 and 1 in 1999. Take
estimates for olive ridleys are below the authorized level for 1998 and 1999, although the
estimated probability that the take exceeded the level was 46% for 1999. All estimates for
leatherback, loggerhead, and green turtles were below the authorized take level.
It cannot be stressed strongly enough that since the observer program was an observational

study, only associations with take can be identified. It is not possible to make causality
statements from this type of study. This fact must be kept in mind when interpreting the
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models used to predict take. Furthermore, these models were created with the objective of
predicting take; under different objectives, a different model may be preferred.
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Table 1. Explanatory variables considered for predicting total take

Variable Notes

Location in time and space latitude (lat) degrees north
longitude (lon) degrees east
distance to 17◦C isotherm calculated from lat, lon, and sst
distance to 19◦C isotherm calculated from lat, lon, and sst
year 94-99, looked at pooling

categories
month January-December, looked

at pooling categories
day represented as a circular

variable for a year using the
cosine and sine functions

Condition of gear hooks
hooks/float

Environment temperature sea surface temperature (sst)
Catch of other species total and proportion of total

yellowfin
skipjack
albacore
swordfish
blue shark
mahimahi
striped marlin
blue marlin
wahoo
spearfish
opah
albatross

Other vessel length registered length
trip type 3 categories (swordfish,tuna,mixed)
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Table 2. Observed turtle take and estimated probability (in parentheses)
that a turtle was killed by the interaction with the fishery. Takes and estimates
are given by condition and were calculated from the 1994-1999 observer data.
The probability in the Total row was the probability used to estimate the total
number of kills.

Condition Loggerhead Leatherback Olive Ridley Green

Hooked
Released
Internal 83 1 16 1

(.29) (.29) (.29) (.29)
External 56 23 10 8

(0) (0) (0) (0)
Unknown 3 4 0 0

(.17) (.01) (.18) (.03)
Dead 1 1 6 1

(1) (1) (1) (1)
Entangled
Released
Okay 3 3 0 0

(0) (0) (0) (0)
Injured 0 3 0 0

(0) (0) (0) (0)
Dead 0 2 0 0

(1) (1) (1) (1)
No record
Released 1 3 0 0

(.17) (.01) (.18) (.03)
Total 147 40 32 10

(.17) (.08) (.33) (.13)
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Table 3. Explanatory variables included in the prediction models

Species Explanatory variables

Loggerhead month in three categories: [1,2],[5,6],[3,4,7-12]
latitude as a polynomial: lat+ lat2

sea surface temperature in two categories: [sst ≤ 23.77◦C],[sst > 23.77◦C]
Olive Ridley sea surface temperature in two categories: [sst ≤ 24.22◦C],[sst > 24.22◦C]
Leatherback latitude in four categories: [lat ≤ 14.95◦N ], [14.95◦N < lat ≤ 24.84◦N ],

[24.84◦N < lat ≤ 33.82◦N ],[lat > 33.82◦N ]
Green none



17

Table 4. Loggerhead take and kill estimates with 95% prediction intervals
and probabilities that the real takes or kills exceeded the authorized levels.
Authorized levels for take and kill for 1994-1997 were 305 and 46 and for
1998-1999 were 489 and 103.

Takes Kills
Year Est. 95 %PI Prob. Est. 95 %PI Prob.
1994 501 [315-669] .98 88 [36-141] .95
1995 412 [244-543] .90 72 [31-115] .89
1996 445 [290-594] .96 78 [34-127] .92
1997 371 [236-482] .82 65 [28-102] .84
1998 407 [259-527] .09 71 [32-112] .06
1999 369 [234-466] .01 64 [28-102] .03

Table 5. Leatherback take and kill estimates with 95% prediction intervals
and probabilities that the real takes or kills exceeded the authorized levels.
Authorized levels for take and kill for 1994-1997 were 271 and 23 and for
1998-1999 were 244 and 19.

Takes Kills
Year Est. 95 %PI Prob. Est. 95 %PI Prob.
1994 109 [68-153] .00 9 [0-22] .03
1995 99 [62-141] .00 8 [0-21] .02
1996 106 [69-148] .00 9 [1-21] .02
1997 88 [55-124] .00 7 [0-18] .00
1998 139 [79-209] .00 12 [1-28] .23
1999 132 [76-193] .00 11 [1-27] .20
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Table 6. Olive ridley take and kill estimates with 95% prediction intervals
and probabilities that the real takes or kills exceeded the authorized levels.
Authorized levels for take and kill for 1994-1997 were 152 and 41 and for
1998-1999 were 168 and 46.

Takes Kills
Year Est. 95 %PI Prob. Est. 95 %PI Prob.
1994 107 [70-156] .04 36 [8-64] .36
1995 143 [90-205] .39 47 [7-84] .63
1996 153 [103-210] .53 51 [11-90] .70
1997 154 [103-216] .54 51 [8-92] .70
1998 157 [102-221] .38 52 [11-92] .62
1999 164 [111-231] .46 55 [11-96] .66

Table 7. Green turtle take and kill estimates with 95% prediction intervals
and probabilities that the real takes or kills exceeded the authorized levels.
Authorized levels for take and kill for 1994-1997 were 119 and 18 and for
1998-1999 were 52 and 15.

Takes Kills
Year Est. 95 %PI Prob. Est. 95 %PI Prob.
1994 37 [15-65] .00 5 [0-16] .01
1995 38 [15-70] .00 5 [0-17] .02
1996 40 [19-70] .00 5 [1-17] .02
1997 38 [14-73] .00 5 [0-17] .00
1998 42 [18-76] .28 5 [1-19] .06
1999 45 [18-82] .34 6 [1-19] .06
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Figure 1. Approximate positions of observed sets with positive loggerhead takes represented
as red dots and takes of zero represented as blue dots.
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Figure 2. Approximate positions of observed sets with positive leatherback takes represented
as red dots and takes of zero represented as blue dots.
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Figure 3. Approximate positions of observed sets with positive olive ridley takes represented
as red dots and takes of zero represented as blue dots.
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Figure 4. Approximate positions of observed sets with positive green turtle takes represented
as red dots and takes of zero represented as blue dots.
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Figure 5. Approximate effective degrees of freedom assuming a Poisson distribution and
1000 independent observations.
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Figure 6. The fit of loggerhead take to the scaled latitude, for latitudes greater than or equal
to 22◦N . The solid line represents the fitted smooth curve with 4 degrees of freedom, the
dashed lines denote the fitted smooth plus or minus 2 standard errors (approximate) and
demarcate a “standard error band”, the black circles represent partial deviance residuals,
and the bars on the x-axis are the rug-plot. The residuals are well distributed above and
below the curve and follow the basic line of the curve. The standard error band shows a
definitive curve and is narrow in the center of the curve, but wider at the right endpoints
where there are few observations.
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Figure 7. The fit of leatherback take to latitude expressed in four categories: 0=[lat ≤
14.95◦N ], 1=[14.95◦N < lat ≤ 24.84◦N ], 2=[24.84◦N < lat ≤ 33.82◦N ],3=[lat > 33.82◦N ].
The long horizontal solid line represents the fit. The length of this line is a function of the
number of observations in the category. The vertical lines are twice standard error bands,
the jittered black circles represent partial deviance residuals, and the solid bars on the x-axis
are the rug-plot. The fitted take in the second category is distinct from the others.



24

Figure 8. Takes of olive ridley versus latitude North and sea surface temperature degrees
Celsius (SST). The different colors represent the two categories of sea surface temperature
split at 24.22◦C used in the prediction models (See Table 3).

Figure 9. Takes of leatherback versus latitude North and sea surface temperature degrees
Celsius (SST). The different colors represent the four categories of latitude split at 14.95◦N ,
24.84◦N , and 33.82◦N used in the prediction models (See Table 3).
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Figure 10. Takes of loggerhead versus latitude North and sea surface temperature degrees
Celsius (SST). The different colors represent the two categories of sea surface temperature
split at 23.77◦C used in the prediction models (See Table 3).

Figure 11. Takes of loggerhead versus latitude North and month classification (0 = {1, 2}, 1 =
{5, 6}, 2 = {3, 4, 7 − 12} ). The different colors represent the two categories of sea surface
temperature used in the prediction models (red=SST ≤ 23.77◦C, blue=SST > 23.77◦C).
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Figure 12. Take and kill estimates for loggerhead turtles. The approximate distributions of
estimated take and kill are mirrored around the prediction intervals (dark line with bars at
each end). The dark squares in the plots represent the point estimates. The proportion of
the distribution above the trigger level is shaded in red and the estimated probability that
the trigger level is exceeded is given above each year’s plot.
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Figure 13. Take and kill estimates for leatherback turtles. The approximate distributions of
estimated take and kill are mirrored around the prediction intervals (dark line with bars at
each end). The dark squares in the plots represent the point estimates. The proportion of
the distribution above the trigger level is shaded in red and the estimated probability that
the trigger level is exceeded is given above each year’s plot.
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Figure 14. Take and kill estimates for olive ridley turtles. The approximate distributions of
estimated take and kill are mirrored around the prediction intervals (dark line with bars at
each end). The dark squares in the plots represent the point estimates. The proportion of
the distribution above the trigger level is shaded in red and the estimated probability that
the trigger level is exceeded is given above each year’s plot.
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Figure 15. Take and kill estimates for green turtles. The approximate distributions of
estimated take and kill are mirrored around the prediction intervals (dark line with bars at
each end). The dark squares in the plots represent the point estimates. The proportion of
the distribution above the trigger level is shaded in red and the estimated probability that
the trigger level is exceeded is given above each year’s plot.


